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Carrier-Sense Stack Algorithms for Multiple Access Communication Channels

Lazaros Merakos

Electrical Engineering and Computer Science Department

University of Connecticut

Abstract

We consider the random multiple access of a collision-type, packet-switched

channel, for the Poisson user model in a local area network environment, where

* "carrier sensing" techniques are possible due to small propagation delays. We

propose and analyze random access algorithms that are representative of a new class

of stable algorithms with "limited sensing" and "free access" characteristics.

"Limited sensing" algorithms require that users sense the channel only while they

have a packet to transmit, and, therefore, they have practical advantages over

algorithms that require continuous channel sensing. The "free access" characteris-

tics of the proposed algorithms simplify their implementation, since newly arrived

packets are transmitted upon arrival, provided that the channel is sensed idle.

Utilizing the regenerative character of the stochastic processes that are

associated with the random access system, we derive lower bounds on the maximum

stable throughput, and tight upper and lower bounds on the induced mean packet

delay. The proposed algorithms are easy-to-implement, and they combine

inherently stable operation and high performance with modest channel sensing

requirements.

This work was supported by the Office of Naval Research under contract

no. NOOOl4-85-K-0547.
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1. INTRODUCTION

Local area networks (LANs) are designed to support high bandwidth communications

among a large number of users within a local geographical area. In the case of a

large population of independent, bursty users this service can be provided at a low

cost per user, if the LAN employs a single, packet-switched, collision-type, multiple

access channel using a communications medium such as coaxial cable, optical fibre, or

radio multi-access channel. The sharing of the common channel by the contending users

is coordinated by a distributed control random access algorithm (RAA).

When the end-to-end propagation delay of the LAN is small, as compared to the

transmission time of a packet, then the users can determine the channel activity in

a short amount of time, through "channel sensing" operations. Depending on the

communication medium used, users may be able to determine whether the channel is idle

or busy,(i.e., the carrier-sensing environment), or even to discriminate between

successful and interfering transmissions while they are in progress,(i.e., carrier-

sensing with collision detection).

The earliest and most well known RAAs for the carrier-sensing environment belong

to the class of ALOHA-type algorithms, such as the non-persistent CSMA and CSMA-CD

algorithms and their variations,[l-3]. Ethernet,[41,is a prominent example of a LAN

using an algorithm from this class. ALOHA-type algorithms are easy to implement, but

*they have inherent long-term stability problems, unless retransmission control

*- algorithms are employed to support them,15].

A relatively new class of random access algorithms is the class of Tree algorithms

.* [6-10]. These algorithms gather information about the history of the channel activity

. (feedback information), and use it to resolve collisions by employing a tree-search-

type collision resolution procedure. Tree-type algorithms, which are extensions of

* the Tree algorithms to the carrier-sensing environment, have been analyzed in [11,

. . .. . . ... ...- . . . .. ~ ~- ... .*..-...-... . . . .-..-. *. ..-...-. 5. -. -..-. ? - .'" ----- - ; -
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12]. These algorithms have continuous channel sensing and blocked-access character-

istics; that is, all users are required to inspect the feedback information by sensing

the channel constantly even if they have nothing to transmit, and newly arrived packets

are blocked until the on-going collision (if any) has been resolved. These algorithms

are inherently stable, perform better than ALOHA-type algorithms, and some of them

guarantee first come-first serve delivery of packets. However, the continuous channel

sensing requirement, which is an integral part of their operation, makes the Tree-

type algorithms unsuitable for networks where activation of new users and user mobility

disrupt the feedback sensing continuity. In addition, some of the more efficient Tree-

type algorithms are sensitive to errors in the feedback, information caused by channel

noise or by actions of higher level protocols discarding packets already in the system

[10, 11].

A new trend towards the design of RAAs that could combine stable operation and

high performance with modest feedback requirements and robustness in the presence of

feedback errors started with the introduction of the "Stack" algorithm by Tsybakov

and Vvedenskaya (121, and its variations (13-161. The new class of algorithms has

limited channel sensing and free-access characteristics. In contrast to Tree algorithms,

the algorithms of this class require that a user sense, the channel only while he has

a packet to transmit (limited channel sensing); furthermore, newly arrived packets

access the channel freely, independently of any collision resolution process that

* might be in progress. In addition to being practically appealing, the algorithms of

this class are less sensitive to feedback errors, as compared to Tree algorithms, for

the same channel and user model [16].

The above considerations have motivated our interest in limited channel sensing

algorithms for the carrier-sensing environment. In this paper we propose and analyze

a simple such algorithm, which is representative of the above class. Utilizing the

- regenerative character of the stochastic processes that are associated with the random
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access channel, we derive lower bounds on the maximum stable throughput, and tight

upper and lower bounds on the mean packet delay induced by the algorithm. These

results indicate that the proposed algorithm has mean delay-throughput characteris-

tics that are uniformly better than those of the optimally controlled non-persistent

CSMA and CSMA-CD algorithm [5], and comparable to those induced by the extension of

the most efficient Tree algorithm to the carrier-sensing environment 1121. More

important, however, is the fact that the proposed algorithm combines high perfor-

mance and inherently stable operation with limited channel sensing and low opera-

tional complexity.

The organization of the paper is as follows. Section 2 introduces the user and

channel model.Section 3 states the algorithm. In section 4 we explain some of its

important properties, and we evaluate its output rate. In section 5 we develop

bounding techniques that yield arbitrarily tight upper and lower bounds on the mean

packet delay induced by the algorithm, and a lower bound on the algorithm's maximum

stable throughput. In section 6 we present a generalized version of the algorithm

* introduced in section 2, and we make some performance comparisons. Finally, in

section 7 we draw some conclusions.

4.

-. . . . . .* *. * * * . - .
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2. USER AND CHANNEL MODEL

We assume that an infinite population of independent, bursty, packet-transmitting

users-share a common communication channel. We model the packet arrival process as

homogeneous Poisson with intensity X packets per unit of time. For convenience, we

assume that packets are of fixed length, and we take the packet transmission time to

correspond to our unit of time. We also assume that the propagation delay between

any two users in the network is at most a, where a < 1.

For simplicity in analysis, we assume that the time axis is slotted, where the

slot size is equal to the maximum propagation delay a. Users may initiate a packet

transmission only at the beginning of a slot.

We consider limited channel sensing and ternary feedback. That is, each user

senses the channel continuously, from the time instant when he generates a packet, to

the time instant when this packet is successfully transmitted, and he can distinguish

without error among the following channel states: a) idle (no transmission) b) success

(transmission of a single packet) c) collision (simultaneous transmission of at least

two packets). We assume that a collision results in complete loss of the information

included in all the involved packets; thus, retransmission is then necessary.

Without loss of generality, we assume that a user who senses the channel can

distinguish between transmission (success or collision) and no transmission (idle)
9I

instanteously. However, the time required to distinguish a collision from a success-

ful transmission (collision detect time) is a system characteristic whose value depends

on the maximum propagation delay, the transmission medium, the packet encoding and

modulation techniques, and the method used to detect collisions [21, 22].

In cable networks like Ethernet, because of the physical properties of the cable,

" it is possible for a user to listen to the cable while transmitting. What this means

is that if more than one users start to trausmit at the beginning of a slot, they will

shortly determine that interference is in process and they will, subsequently, abort

* Iii chainnels where this sen! ing, oper.it ion caivnot bhi con ;idered in,,stantanous, the slot
S;izli will be the sum of th, maximum pro11 "' tion del.iv ,ind the tim, required by a re-
Ceiver to reliAbly disti s,.i!;h o,etwe. -l-.i ,' lissi~ot im! nto traismission.
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their transmissions.

Given that a collision occurs, the time until all transmitting users stop trans-

mission will be called the "conflict truncation time" and it will be denoted by 8.

The value of 8 depends on the implementation. In synchronous Ethernet-type networks,

for example, the collision truncation time can be represented as the sum of three

"'. terms, 8 = y + 6 + . The y term represents the propagation delay before interference

reaches all transmitting users; clearly, y is less than or equal to the maximum pro-

pagation delay a. The 6 term represents the time it takes for a user to determine

interference once the latter has reached him. The C term denotes the time spent for

a collision consensus reinforcement mechanism, by which a user, experiencing inter-

ference, jams the channel by transmitting additional bits, (usually, in the form of

encoded phase violations), to ensure that all users who sense the channel detect the

collision. The values of 6 and C depend on the implementation,and can be as small

as a few bits transmission time. Here we assume that a < a < 1. In addition, we

assume that the detection of collisions is performed by the receiver (receive mode

collision detect, IEEE Standards Committee, Project 802, [23]). This means that, in

addition to transmitting users, non-transmitting users have, also, the capability to

detect collisions, provided that they are sensing the channel during the collision.

In contrast to the cable network users, the users is some local networks, such

as packet radio networks, cannot listen to the channel while they are transmitting.

If a collision occurs, then the transmitting users will detect the interference not

earlier than the end of their transmission; thus, in this case the conflict truncation

time is usually equal to the packet transmission time; i.e., 3 = 1.

In summary, the two important parameters of the carrier-sense channel

considered here are the maximum propagation delay a, and the conflict truncation time

3. The performance of the algorithms to be presented in this paper will be evaluated

for valiies of a and su ch that a < I and 't < F <, 1. This ranl;e of pa rameters models

S"..- v-'-. . ",, - . - - , . 5." ,
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adequately well a substantial class of the cable and radio networks that use carrier-

sense channels.

To facilitate the comparison of the performance of the algorithms to be presented

here to that of other algorithms found in the literature, we assume that both the

packet transmission time and the conflict truncation time are integer multiples of a

slot; that is, we assume that the packet transmission time is equal to T slots, where

T = i/a > 1, and that the conflict truncation time is equal to R slots, 1 < R < T,

where R =/.

-,.-
. ' .' ," " . ... .. i -, • - . '" . " " "

'
- "'

:
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3. THE ALGORITHM AND ITS GENERAL OPERATION

In this section we describe a limited channel sensing algorithm that allows

user to communicate with each other in a carrier-sensing environment satisfying the

assumptions specified in the previous section.

The algorithm is implemented by each "busy" user in a distributed fashion. A

user is defined to be busy from the moment it generates a new packet for transmission

until the moment after the same packet is successfully transmitted; otherwise, the

user is said to be idle. The time instant that a user generates a packet, (i.e.,

when he becomes busy), he starts sensing the channel and he simultaneously initializes

the algorithm; he continues to sense the channel until the successful transmission

of his packet, (i.e., until he becomes idle). Upon the occurrence of this event, he

stops sensing the channel and simultaneously he terminates the algorithm.

For the implementation of the algorithm the user uses a counter, whose indication

at time t is denoted by CIt. The indications of the counter dictate the operation of

the algorithm, which is described as follows:

Rule 1 -- Counter initialization

Let the user generate a new packet at time to, and let k0 denote the first slot

boundary, after tO . Also, let k denote the first slot boundary after to , at which

the user senses the channel idle. Then, at kI, the user initializes his counter as

follows:

$1 ; if kI  k0
Clk =M ; if kI  ko

where M is a random variable uniformly distributed on {l,2,...,m}, and the integer

m, tn>l, is an algorithmic parameter.

Rule 2 -- Transmission rule

.S Th, user transmits at the beginning of the slots at which his counter indication

* t e ,la I Is

%**~** * *. . . . . . . . . . . .
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Rule 3 -- Counter updating

After the user has initialized his counter he updates it only at the slot

boundaries at which he senses the channel idle. Let k ,... denote these slot

boundaries in accordance with their occurrence. Let the user be busy at ki(i=l,2,3,...),

with CIk. > 1. Then, at time ki+ 1 he updates his counter as follows:

a) If CIk. > 1, then
I

Clki-I if, during (kik i+l he senses the channel idle1.i'i

CIk = CIk +m-1 if, during (ki,ki+1), he senses the channel busy with a
successful transmission

CIki+m+n-i if, during (ki,ki+l), he senses the channel busy with a

collision

where the integer n,n > 2, is an algorithmic parameter.

" b) If CIk = 1 and, during (kik i+), he senses the channel busy with a collision,

then

CI =m+J

where J is a random variable uniformly distributed on {l,2,...,n}

If CIk. = 1 and, during (ki,k i+l), he senses the channel busy with a successful

transmission, then his packet has been successfully transmitted and the user termi-

nates the algorithm.

The integers m and n used in the description of the algorithm are design

parameters subject to optimization for throughput maximization; their optimum values

depend on the values of the system parameters a and B, and they will be given later.

The general operation of the algorithm is perhaps better illustrated by intro-

ducing the concept of a "stack". A stack is an abstract storage device consisting

of an infinite number of cells, labelled 1,2,3,... . The number of packets that a

cell can accommodate is unrestricted. At each t ime t hIuring the operation of the

aIgorithm, users with counter value CI t r can e tfiothlit o f ;is hiving stored their
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packets in cell #r of the stack. A packet is transmitted whenever it enters cell

#1 of the stack. Packets are, eventually, successfully transmitted after moving

throigh the cells of the stack in accordance with the algorithmic rules described

above.

The execution of the algorithm by each busy user induces on the time axis an

alternate sequence of transmission periods (successful or unsuccessful) and idle

periods. However, this channel activity reaches each of the users, who sense the

channel, with a different amount of delay, depending on their distance from the

transmitting users. For convenience, consider an arbitrary user, called user X, and

assume that he senses the channel continuously from the beginning of the operation of

the system. Let t.(i=O,l,2,...) denote the consequtive slot boundaries at which user1

X senses the channel idle. The interval [ti, t i+) , i=0,l,2,..., will be called the

i-th algorithm step. If during an algorithm step the channel is idle, busy with a

successful transmission, or busy with a collision then the algorithm step will be

called idle, successful, or unsuccessful, respectively. As it can be seen from

figure 1 an idle algorithm step lasts for one slot; a successful algorithm step lasts

for T+l slots, T slots to place the packet onto the channel and one slot for this

packet to clear the channel due to propagation delay; an unsuccessful algorithm step

lasts for R+1 slots, R slots for the transmitting users to detect the collision and

abort their transmissions and one slot for the packet fragments to clear the channel

due to propagation delay. Thus, the length of the i-th algorithm step, measured in

units of time, is given by

OL if the i-th algorithm step is idle

t t - t=I 1+O if the i-th algorithm step is successful? i+I  t. 4
Q+6 if the i-th algorithm step is unsuccessful

The description of the general operation of the algorithm and its analysis ire

* gr ittlv facilititod if minc considers how the state of the stack evOlvt,' at the

bh till it; of CTI';c'qtitiv,' ,I r, rith:1 top!;. In t i g re t he -,tack ij; inheddeJ it

4", ,- 7
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and t i+ to show how packets move through the cells of the stack,(i.e.,how users

update their counters),as well as to show how new packets arriving between t. and1

ti+l.place themselves in the cells of the stack,(i.e.,how users initialize their

counters), depending on whether the algorithm step was idle, successful or unsuccess-

ful.

As it can been seen from figure 2, the operation of the algorithm is based on

the "divide and conquer" philosophy that characterizes most RAAs. More specifically,

the algorithm spreads the incoming traffic into the first m cells of the stack to, a

priori, avoid collisions, when the new traffic is heavy,(e.g., after a successful

*. transmission). Furthermore, to resolve collisions, it uniformly splits the group of

collided packets into n cells of the stack. The parameters M and n allow the

algorithm to adapt its operation to the given values of the network parameters a

and 6. If, for example, ot << 3, then m and n should be large to take advantage of

the much lower "cost" (wasted channel time) of an idle algorithm step (a units of

time), as compared to that of an unsuccessful algorithm step (O+a units of time).

*Finally, we point out that users with newly arrived packets initialize their

counters only on the basis of whether the channel is busy or idle (see rule 1).

This is desirable, since some of them may not have sufficient time to reliably

distinguish a successful transmission from a collision , before the channel goes

idle.

The algorithm described in this section will be referred to as the LAN stack

algorithm (LANSA).

..

'""7
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4. RENEWAL PROPERTIES AND OUTPUT RATE

To analyze the performance of the LANSA we introduce the concept of a session.

A session is a sequence of consecutive algorithm steps that begins and ends at two

consecutive algorithm renewal instants. These instants are denoted by R n, n > 1,

and are determined by means of a conceptual marker that operates on the stack. The

first session begins with the beginning of the first algorithm step, at R1 
= tI ,

with the marker placed at cell #2. During the session, the marker's position in the

stack is adjusted at the beginning of each algorithm step. At ti , let the marker be

at cell #Ci, Ci > 2; then, at t i+ the marker is placed at cell #Ci+l, with

C. - i if the ith algorithm step is idle
1

C C.+M-i if the ith algorithm step is successful
i+l

C.+m+n-I if the ith algorithm step is unsuccessful1

where the integers m > 1, n > 2 are as defined in the LANSA description.

The second renewal instant, R2, is the instant at which the marker drops to

cell #1 for the first time, that is, R2 = min {t > R C. = 11; this signifies the

end of the first session. Instantaneously, at R2, the marker is then adjusted to

cell 02 and the second session begins. This process continues indefinitely.

A session starting with k packets in the first cell of the stack is called a

session of multiplicity k, k > 0. Note that if at t., i > 1, the marker is at cell

#/r of the stack then, from the rules of the algorithm and the marker's instructions,

it is deduced that cells #J, j > r, are necessarily empty. Thus, when a session

begins, all cells are empty except for cell #1, which is occupied by the k new

packets that arrived during the last algorithm step of the previous session.

The time from the instant that a session begins until it ends is the length of

the session. The session with multiplicity 0 is called the empty session, and has

length equal to (x, (i.e., one slot). A non empty session has a random length that

depends on the arrival process of new packets during the se;sion, and on the rules
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of the algorithm. In view of the independent and stationary increments property of

the Poisson process that models the input traftic, it tollows that the session

lengths will be independent, identically distributed (i.i.d.) random variables, if

the session multiplicities are i.i.d. random variables. Note that a session ends

when the marker drops to cell 11 for the first time. Then, since the marker's

position is decremented only after an idle algorithm step (see marker's instructions),

it follows that the last algorithm step of a session is always idle. Thus, the

session multiplicities are i.i.d. random variables with distribution

A k
P(K=k) = Pk 4 (Aa) exp (-Xa)/k!, (1)

and, therefore, the session lengths are i.i.d. random variables as well.

a. Output Rate

Let L L .2'. denote the lengths of successive sessions; then,

R = ; R1 = R + Li , i=1,2,...
-. 3.i+l i i

define the algorithm renewal instants. The sequence {R } forms a delayed renewal
d i i>i

process, since Ll, L2 , ... are i.i.d. non-negative random variables.

Let

n

11(n) = tn 1>0.)

j=1

where 1(0.) denotes the indicator function of the event 0. [ (successful transmis-

sion during the jth algorithm step). Thus, p(n) represents the average fraction of

time that successful packet transmissions have occurred on the channel by instant tn

Consider now an arbitrary session, say the ith, and let S. denote the random

number of packets that were successfully transmitted during the course of the session.

Clearly, S. depends on Li., but the pairs (Li,si), i > 1, are independent and
n i 1 L S a

*identically distributed. Let S = (S), and L = E(L.). The expectcd number of
1:S '
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successful transmissions, S, during a session can be thought of as an average reward

earned during the session. With this in mind, we state the following result from

the Lheory of renewal reward processes (see, for example, t18, sec. 3.6]).

Theorem I If S < -, and L < -, then there exists a real number, li, such that
S

Zim p(n) = Lim E(p(n)) = - = p with probability I
n-', o n-* oL

The above theorem states that the (expected) lonz-run average number of success-

ful transmisnions per unit time is just the exnecred number of successful transmis-

sions during a sesqion, divided by the mean session length, provided that both S and

L are finite. The quantity li is the channel's output rate.

Consider again the ith session; since sessions always end with an idle algorithm

step, and at both Ri and Ri+l there are no blocked users present in the system, it

follows that the number, Si. of successfully transmitted packets (if any) during the

ith session is just the number of packets arrived at the system during the time

interval [R i-a, Ri+l-); all such packets will be called packets associated with

session i. Now, if we let M= L I/a = (R -R )/a denote the length of the ith
i i +1 i

session measured in slots, then
M.

I

S. = A. (2)

j=l

where A. denotes the number of arrivals in the interval [R +(j-2)z, R n+(J-l))

Clearly, {A.}j> I is a sequence of independent Poisson random variables, with intensity

Cat. Furthermore, Mi is a stopping time for {A.} j>l since the event {M.--m} is

independent of Am+l' Am+2 ..... If we assume that E(Mi) < -, then, taking expecta-

tions in (2), and applying Wald's lemma, ([17], p. 59) yields

S = E(S i) = E(Mi)E(A.) = L L (3)

since E(A.) ctX, and E(Mi) = L/a, from the definition of N. In view of (3),

theorem 1 yields

- .*** ........ ................. l '-i.... ..... "....... .... . *. . i
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Corollary I. If L < o, then p = X; that is, the LANSA maintains the rate if the

mean session length is finite.

In the rest of this section we investigate the conditions under which L <

and we establish bounds on L.

b. Mean Session Length

Consider a session of random multiplicity, K > 0, and let " denote its random

length. If we let Lk = E(ZKIK=k), then the mean session length is given by

L = Pk Lk (4)

k=0

where Pk is as given by (1).

We proceed now with the investigation of the region of convergence of the series

given in (4), by deriving and studying a system of equations for the mean length of

a session of specified multiplicity, Lk, k > 0. We first state the following.

Proposition 1. The length, tk, of a session with specified multiplicity k > 0

satisfies the following system of equations:

L Xjif k = 0
m

ia E t x if k = 1 (5)

{ m n
k j=l j

E++ + Zif k> 2
j~l YJ j=l Kj + Z

where Xi...,XM, YI,.. ,Y m, ZI ,...,Z are independent random variables, which are,

also, independent of the random variables K, ... ,K . The corresponding distributions
0A r A iep_)

aire as follows: P(X1) -= = (AS) exp(- s)/(i!), P(Yj=) = r= (X ) exp(-X)/(i!),

h< e e hr, (-+) and (Brm-l +) ; P(U, -i) = ,Ais defined in (1)

• ,. ,..
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n
k! -k

• = . , 0 < k, _ k ; k i = k.

1 2i=

Proposition 1 follows directly from the LANSA specifications, and its proof is

omitted. Taking expectations in (5) yields the following proposition.

Proposition 2. The mean session lengths, {L k}k>0  satisfy the following infinite

dimensional system of linear equations:

X O=c O Xk ak,i xi gk I k> 1 (6)

~ where

a,imsi; ak,ifmri + nq k, i , k>l ; gl=l+(1+-ms0 )a; gk = 6+(l+mr0+nqk,0), k>l

wherel

q qk, =-- * b i ), b = pi(lp)k-i, and si, ri, Pi are as defined in

proposition 1.

Formally, the system of equations (6) always has an "infinite" solution

_ 0 = ct, Xk = c, k > 1. The following theorem specifies a sufficient condition under

which system (6) has a solution, {Xk}k>0 , with 0< xk < + - for all 0 < k < -, which

* coincides with the sequence, {L k}k> , of the mean session lengths induced by the LANSA.

*" Theorem 2

(i) Given a,a,m>l, n>2, system (6) has a solution, {y I such that

YO = a, 0 < b'k-c' < Yk < bk-c, k > I

if A < X (CE,;m,); where X (cx,t3;mn) is the unique solution of the equation
0 0

1. * denotes convolution

° . * .**o~. ~ 5* -~
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1-(l-a), _-), 8+(m-m)a = 0 (7
l-m(l-s0 ) (1-r0)m+(l-q2 , )n-1

over phe interval [0,(l+m)-), and where the coefficients b,b',c, and c' are bounded

functions of X.

(ii) For every Xc[0,X (a,1;m,n)), Lk = Yk for all k > 0.

The proof of theorem 2, and the expressions for the coefficients b,b',c, and c'

can be found in the Appendix.

Given c,8,m,n, let Xc[O,X o(a,;m,n)); then, from theorem 2, we have

b' k-c' < Lk < b k-c , k > 1 (8)

Substitution of the above bounds into (4) yields

L1 < L < L < o for every XE[O,0 (c,8;m,n)) (9)

where Lu = cXb-c + (a+c)exp(-aX) , L= cXb'-c' + (a+c')exp(-aX)

Given the network parameters ct,6, let us now define,

X(a,3) sup{X (a,3;m,n)} - X0o(a,;m*,n*) (10)
m,n

In view of (9), (10), and of corollary 1 we have the following corollary.

Corollary 2. Given ca8,m,n, the LANSA maintains the rate, that is, X = t.i, for every

*: \c[0,)' (t~,8;m,n)). Given CX,1, the LANSA with m = m* and n = n* maintains the rate
0

"." for every Xc[O, (a,B)).

We used numerical search techniques to determine X(c,1). In table 1 we give the

values of A(a,3) for representative values of t, and for =c 3 =0.5, and 6=1. In the

same table we also give the values, m , , , of the design parameters m,V that achieve

- the maximization in (10). As table 1 reveals, m and ii* generally increase as a

? . ... ... ,. .. .. - .- - -.-. , -...- , .--.. ,"- .',- ,. *. *." ,, .--. .. . -. < . i
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decreases; this is more prominent in the case where >> a (bottom left part of the

table). This is an intuitively pleasing result; if the cost of an unsuccessful

algorithm step is much higher than the cost of an idle algorithm step, then, to avoid

collisions, the algorithm should a priori spread the incoming traffic by increasing

m, and it should split the group of collided packets into more cells by increasing n.

c. Tight Bounds on the Mean Session Length
The bounds on L given by (9) are tight enough for small values of A, but they

become loose as X approaches X (ct;m,n). In this subsection we develop a methodo

for computing bounds on L that are tighter than those given by (9); these new bounds

will be used in the delay analysis of the next section.

Given some finite natural number, N > 1, let us consider the following system

of N linear equations

N

Xk = Ea k,i xi I b k , 1 < k <_ N,

i=l

where bk, 1 < k < N, are non-negative real constants, and ak,i , 1 < i < N, 1 < k < N,

are as given in proposition 2.

The solution to system (11) is characterized by the following lemma, whose proof

can be found in the Appendix.

Lemma 1

Given cBrn, let A < A (c,$;m,n); then, for every N > 1 and for every given
0

bk > 0, 1 < k < N, system (11) has a unique non-negative solution x = (IN-AN) b,

and the matrix (I.-N N) has non-negative elements; where2 x = (x1 ,..., ,)

bN~t
b = (b ... b N) AN = (aij) is the (NxN) non-negative, square matrix with

aij. = ai, . < i < N, I < j < N, and IN is the (NxN) identity matrix.

Using lemma I we can express the following theorem, whose proof is given in

the Appendix.

2. t denotes transpost,

,',-I I:~~~~~~~~~~~~~....:. :... .. ...... - ....... .>" -.-. :----::'::":,--:"
• " ..... ;-i ,....;':.'...::.:.-.".-: a-,bi '' ' el i
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Theorem 3

Given a,,m,n, let A < A (a,,3;m,n); then, for every N > I0

b'k-c' < L < Lk Lk < bk-c , I < k < N, (12)
kU k< kk

where [Lk; l<k<NI, and (L l<k<N} are the unique solutions to system (11) with

b = gk + =E a (bi-c), and bk = + E ak (b'i-c'), respectively.

kb i= N+1 k,i k k i=N+1 ~

Using the bounds Lk , L , for 1 < k < N, and the linear bounds given by (8),for

k > N, in (4) we have

L < L < L*u , for every XE[O,Xo (a,;m,n)) (13)

where

N 0 N
L= pa + Pk Lu + Pk(bk -c) = Lu - p (bkc-k (14)

U 0 ":P : k1

k=l k=N+l k=1

and

N C N

L=POa + Pk L k + X Pk(bk-c) = L + E Pk(Lk - b ' k - c ' ) (15)

k=l k=N+l k=1

and where Lu, L are as given in (9). Note that, from (12), (14), and (15), we have

L < L* < . The bounds {Lk; l<k<N}, and {L z; 1<k<N}, required for the evalua-
n < _ u - u k -

tion of L*, and L , can be obtained by solving finite system (11), with bk, l<k<N,

as defined in theorem 3. Using N = 10, we solved system (11), for several represen-

tative values of the network parameters a, , and for m=m*, n=n*, as given in table

I. The results for (c,1)=(.l,.l) and (cL)=(.l,l) are included in table 2. rn

table 3, we give the bounds Lu, and L , as found by substituting the solutions (Lk;

1<k<l01, and {L k; l<k<10} into (14), and (15), respectively. Note that the bounds

L', and Le remain extremely tight, (they coincide up to at least the sixth decimal

* point). even for A very close to (a, 3). We should also point out thit, by increasing

* he dimensionalitv N of the finite systeili (11), arbitrarily tight bounds con he, obtained.

!
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5. DELAY ANALYSIS AND STABILITY

Consider the network operating with the LANSA over the time interval [0, + o).

Packets arrive at the network at time instants an, n=1,2,..., where 0 < a1 < a2 <

Let the arriving packets be labelled n=l,2,... according to their arrival instant.

We define the delay, Dn, experienced by the nth packet as the time difference between

its arrival at the transmitter and the instant it is successfully received by the

* 3
most remote receiver , (so that Dn = l+a, when the packet is successfully transmitted

beginning at the same moment it arrives at the transmitter). Let the random variable

SN. denote the total number of packets associated with, (I.e., arrived and successfullyi

transmitted during) the first i non-empty sessions. Let, also, S denote the number
i

of packets associated with the ith non-empty session. We have that N 0=0,

N =N +Sl, i=0,1,2,.... The sequence {N.} is a renewal process, since
i+l i i+l1 i i>O

{S. is a sequence of i.i.d. random variables. Furthermore, the renewal propertiesi i>l

of the LANSA clearly indicate that, whenever a non-empty session ends, the arrival and

waiting-time mechanisms are "reset" by the next arrival; thus, the process {DN I
N.+n n>l'

for every i > 0, is a probabilistic replica of the process {Dn} n>I. Thus, the

discrete-time process {Dn} n>I is regenerative respective to the imbedded renewal

process {Ni }i>O, with common regenerative cycle, S, the number of packets associated

with a non-empty session.

Next define S = E(S), and T = E(Z Di); note that T represents the mean

i=l

cumulative delay experienced by all the packets of a non-empty session. Using S and

*and T we can express the following standard result from the theory of regenerative

processes (see [19, Thm. 2], and [20, Thm. 37]).

Theorem 4

If (A.1) S is not periodic, with S < - and if (A.2) T < -,then there exists a

* real numbr 1) sicli that

. his i-; the wor-'r t cise , since the propag;lt ion de Iv fr he t it .T iit te r to th
i[nteonddI ret,' i vi iC it m t t.

.. . ..- , ... .. ". - ,-'..' ..- , *" -.-. ' v - . ...-..'-'. *. *' '. " . , .
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n n

jD tim n 1 z: t im n1I E(Z Di) with probability 1.
n-= i=l 1=1

Furthermore, D converges in distribution to a random variable V , and
n

D E(O,,) = T/S <

Thus, under assumptions (A.1) and (A.2), the limiting average, the limiting

expected average, and the mean of the limiting distribution of {V I exist,n n>l

coincide, and are finite; their common value, D, represents the mean packet delay

induced by the LANSA. Next we elaborate on the assumptions stated in theorem 3.

From the operation of the LANSA it can be easily seen that S is not periodic. Let

S k denote the expected number of packets associated with a session of multiplicity

k > 0. Then, noting that S0) 0, we have

= S S (16)
I-1P0  l kS -p0  k I-P 0

k=l k=O

Given t,$mn, let XC[O A0 (a,6,m,n)); then, from (3), (16), and theorem 3, it

follows that

-1S= (l-Po) X L < 0c (17)

Thus, assumption (A.1) is true, if A < X (a,;m,^n). We proceed now to show that

this is also true for assumption (A.2).

Consider the nth packet arrival; its delay can be expressed as

V =A +C
n n n

A denotes the nth packet access waiting time from the packet arrival instant
to the instant the packet enters the stack for the first time.

C denotes the nth packet cote:ition wiitins, time from the instant tie packet
enters the stack for the first time to the instant it is soc'ossfily receiced
by the most remote rer iye r.

- ,,... ,.-.-.-..-.. -.. ,.-----'-" .,'--,£ a
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Using the above decomposition of the packet delay, we write the mean cumulative

delay, T, experienced by all packets associated with a non-empty session as

T =U+V (18)

AS AS
where U E( E A.), and V EC Z C.) represent the mean cumulative access delay

i=l 1 i=l1

and the mean cumulative contention delay, respectively, over a non-empty session.

Consider the access waiting time, A i, of the ith packet of a non-empty session.

Rule I of the algorithm implies that

( if the ith packet arrived during an idle algorithm step

A. < B+<a if the ith packet arrived during an unsuccessful algorithm step

I l+ if the ith packet arrived during a successful algorithm step

Clearly then A. < max(L,B+t,l+oi) = i+aL. Thus, U < (I+a)S, and in view of (17) we

have that

U < -, for every X < X (L, B;m,n) (19)
O

Next we consider the mean cumulative contention delay, V, experienced by all

packets associated with a non-empty session. Let Vk denote the cumulative conten-

tion delay over a session of multiplicity k > 0. The rules of the algorithm yield

the following relation for Vk:

Proposition 3

0 k =0
pm m-i

i++ , X. + z X k I
J= k j =

V , k M- (20)
, I

k 2,4-)k+( X y )k + K' + Z(2
j=l i=l i. +i

+ . L + 1] 4 L k - 2

YY K 4-'
Si I -i1  i-A I

o-A di s
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where

X., Y 1 < j < m, and K., 1 < i < ki are as given in proposition 1;J j' -- -I - -

j,

K =. K. K. , 1 < i < n-I;
. j=i+1 j - -

X. - Poisson with intensity (l-j/m)X, and X. is independent of X., l<_j<M-l;

Y. - Poisson with intensity (l-j/m)BX, and Y. is independent of Y., lj<m-l.

The proof is straightforward and will be omitted. We note only that, for

k = 1, the first sum represents the total cumulative contention delay experienced

by the packets of M independent subsessions with appropriate multiplicities, while

the second sum represents the cumulative waiting time before first transmission of

all the packets that were initially placed in cell #j, where 1 < j <In. Similarly,

for k > 2, the first two sums represent the cumulative delay experienced by the k

collided packets while waiting for their first retransmission; the third sum

represents the total waiting time before first transmission of all the packets that

arrived during the collision of the k packets, and were intially placed in cell #j,

where 1 < j < M; the fourth and fifth sum represent the total cumulative contention

delay associated with M and ul subsessions, respectively, with appropriate multipli-

cities.

Taking expectations in both sides of (20) yields the following

Proposition 4. The mean cumulative contention delay, Vk = E(Vk), experienced by

all packets associated with a session of multiplicity k > O,satisfies the following

system of equations

."" =0; x k a_ +~' fk k>I (2]I)

Wi=re

• -'.'''...-' .-/ ... ) ". |. ', .__,,, '' ''wh. , -er-e: ' ' ' " i " -i ' ". .. " "
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CO

fl = f ({Lii) = 1a+ -X(m-l) s Li, fk = f ({Li> = (B+a)k +1. 1 i i>0 2 i 'k k i i>0
i=0

CO n-2 k O k-j

+(km+ X (m-))Zr L +E b b(k, b, (k-J--i > 1,2 n n-_ P ( - -)L + ' > i

i=0 =0 j=0 t=0 i=0

where pi, si. r., and b.(.,) are as defined in propositions 1 and 2.

Note that system (21) differs from system (6) only in the forcing terms fk"

The following is a result analogous to theorem 2.

Theorem 5

Given c,6,m > 1, and n > 2, let X (aB;m,n) be as defined in theorem 2.

Then, for every Xc[0, X (ct,;m,n)),

(i) system (21) has a solution, {Zk}k>0, such that

z 0 = 0; 0 < ti k 2 + t k + 13 < z < ulk2 + u k + u k > 1, (22)
0 1 2 3-k-i1 2 3'

where the coefficients , 2 1 U1 , u2, and u3 are bounded functions of X.

(ii) the mean cumulative contention delays, (V } k>0  coincide with the solution

fz kk>0, that is, V = z for all k > 0.
k 0 k k'

The coefficients 1, z2P 1 Ull u2' and u3 are derived in the proof of the

theorem, which can be found in the Appendix.

a Next we write the mean cumulative contention delay, V, over a nonempty session
I, as

v = (I-p 0 )- - (23)., Pk Vk

k=1

I-'ron thc(rum 5 we' have that, t r ,vi.rx, ., , t,.";m,k:) ,
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2 2
0 < tI 2 + 2k + 1}! Vk < Ul k + u2k + u3 , k > 1 (24)

Substitution of the above bounds into (23) yields

V t< V < Vu < = , for every XC[O, Ao(aB;m'n)) , (25)

where

V = (CA(1+a)Ul4+u 2 +(l-e - ax)u 3 )/(1 - e
- A)

u !

V = (cAL(14aX)le +/yf 2+(l-e - a )z3) /(l-e
- )

From (25), and in view of (17), (18), and (19) we have that, for every XE[O, X (a,8;m,n))

both assumption (A.1) and assumption (A.2) in theorem 4 are true; thus, theorem 4

yields the following corollary.

Corollary 3. The mean packet delay, D(X), is finite for every Xe[O, X (a,8;m,n).

* a. Stability

A random-access algorithm is called stable if the mean packet delay is finite. The

maximum stable throughput, q, of a random-access algorithm is defined as the supremum

of the cumulative input rate, X, so that the algorithm is stable; that is,

n A sup{X : D(X) < -}.

Given the network parameters a,, let n(a,3) denote the maximum stable through-

put of the LANSA; then, from (10) and corollary 3, we have

(c,) < n(O.,8)

since X < XA (c,a,m,n) is only a sufficient condition for finite mean packet delay.
0

A plot of the lower bound X on the maximum stable throughput induced by the LANSA,

as a function of CL, for $=a and a=l, is presented in figure 3. In the same figure

we show throughput comparisons between the LANSA and the optimally controlled non-

persistent CSMA and CSMA/CD algorithms presented in 15]. These algorithms assume

that the users are aware of, or can estimate the nuriber of blocked packets currently

C

, . . • .

- p ... o . ° ° . - . - . . . % > . • o . -
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in the system; this additional information is, then, used to implement retransmission

, control policies that stabilize the unstable non-persistent CSMA and CSMA/CD. As it

can.be seen from figure 3,the LANSA throughput is uniformly greater than that

induced by the CSMA algorithms. Note, also, that as the propagation delay, a, in-

creases, the throughput differences between the LANSA and the CSMA algorithms become

significant.

In figure 4 we plot X as a function of the packet lentgh T (in slots) for

representative values of the conflict truncation time R (in slots). The effect of

the early collision detection is perhaps better illustrated in figure 5, where X is

plotted as a function of the conflict truncation time R, with T as a parameter. For

each T, the left end point of the curve corresponds to R = 1, and the right end

point to R = T.

b. Bounds on the Mean Packet Delay

Given ac,m,n, and X < X (a,,m,n), then from theorem 4 and (18) we have
O

D = T/S = A + C

where A = U/S, and C V/S are the mean access delay and the mean contention delay,

• -respectively.

We consider first the mean access delay. The process (A n} n> is regenerative

with respect to the imbedded renewal process N .} defined at the beginning of- i i>O'

this section, for the same reason that {D I is. Thus, theorem 3 applies to
n n>l

(A } as well. In particular, we have that A converges in distribution to a-. n n>I

random variable A,,,, with A = E(Ao) = U/S. Now, Since E(An) < 1 + a, it follows

that A is uniformly integrable. Thus,

tim E(A ) E(A) A (26)n

Next we dofin, the process {Z(t), t > 01 as follows

°.
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0 if tC[tn-l tn) and the nth algorithm step is idle

Z(t) = I1 if tCt nl,t n) and the nth algorithm step is successful

2 if tC[tn-l ,tn ) and the nth algorithm step is unsuccessful

Let a be the arrival instant of the nth packet. Using the process Z(t)n

we write

E(A) = E(E(A nZ(a ))) (27)

Now, since the arrival process is Poisson we have that the conditional distribution

of A conditioned on the events {Z(an)=j}, for j=0,l, or 2, is uniform over an
nn

interval of length at, 1 + a, or a-t , respectively. Thus,

E(AnZ(a )) = I(Z(a ) = 0) + I(Z(a) = 1) + = i(Z(n 2) (28)

where I(.) is the indicator function of the event in the parenthesis.

From (27) and (28) we have

E(A) = 0P(Z(a ) 0 + P(Z(a =1) + - P(z(a ) = 1) (29)
22 n

Next we give a result relating to the asymptotic behavior of the process Z(t).

Lemma 2 Given ot3,m,n, let X < X (ai3;m,n); then
". 0

lim P(Z(t)=j) = Zim P(Z(a )=j)=r ; j = 0,1,2n jt-- o n-- n

.* where

.' = +a(m-l)A+a(r+n-l) (l-l+I)) (I+( ( ) +c(l-(c(+a(m+n) )L-),

r 1 = (I+L)X, and 7T2 =( +L)(1-(l+mt)A)( +a(m+n))--a(B-c)(B+i(m-sl))-L

The proof of lemma 2 is given in the Appendix.

From (26), (29), and lemma 2 we have

A = (cT T0 + (a+cx) T1 + (9+)(T2 )/2 (30)

'22 where Tco ', and "2art, asqgv,' in It, mma 2.

............................................. ............. ... ....... ,.. .. ............. ...... :.,:..:..,.........:
;' .". .-. ', -,t,:_'..,Y' " , . ','.> ,,",, ".', ." - .. *... . *'" -." ,";"; . *, * ' ." -" . "." " ,-.' : " "" "."-* "* . .
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Using the bounds on L, as given by (13), in (30) we have

+1 2u(d 2) l-u(d 2) * AA d u(d 2) l-u(d 2)(1
d dl +2 u +  L - A*< A < A* = dl + d 2( I:- +* u -Eu (31)

where d = (X(m2+2 +I)+(i-(I+1 ))+<L(m+n))-(("0na2 +13 2+2cL3))/2

-1 2 2
d= ( C-(3+a(m+n)) (c2+(a+a) )/2

and where u(d2) = 1 if d2 > 0, and u(d2) = 0 if d2 < 0.

In table 4 we give the values of the bounds A*, and A* for representative

values of the network parameters a and 5. For each pair, (a,a3), we used (m,n)(m*,,1*.

as given in table 1.

Next we consider the mean contention delay C. For X < X (a, ;m,n) we haveo

that C = V/S, where S is as given by (16). Thus,

C = (l-po)V/(XL) (32)

The bounds on V and L given by (25) and (13), respectively, can be used in

(32) to obtain bounds on C. It is possible, however, to obtain bounds on V that

are tighter than those given by (25). The method parallels the one dev oped in

part (c) of section 3, and involves the computation of tighter bounds on Vko for

1 < k < N, where N is some finite natural number. Working towards this direction

we express a theorem, parallel to theorem 2.

, Theorem 6

Given a,3,m,6n, let X[e0,X ((,a3;m,n)); then, for every N > I0

k 2 + f k + e < _ < V < Vu < u k + u k + u , 1 < k < N, (33)
1 2 3 k - k k- 1 2 3

where {V ; l<k<N} is the unique solution to system (11) with

oo

bk = k(IFi " i>1)) + E- Ik,i(Ulk +u 2 k+u 3 ),

i =N+1

* *.*%-
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.11 l'kN is the unique solution to system (11) with
k

00 
2(I ill) ( a l k2+t2k+Z3

: k + : ki 1 I'k}) 2 a3

i=N+l

.. nid F bk-c. for i>N ; G. = L for l<i<N,

.. trtllel to the proof of theorem 2, and it is omitted.

SIr 'k N. and the quadratic bounds given by (22),

v *, (34)
I! U

N

p 1k2 3 k~ (35)

1 P(,.L... k 1 2 3 (36)

k=1

i r. i. ,ive i in (25).

' PH 'Id I., as given by (34) and (13), respectively, in (32),

V I e I he 1, wi rig hounds on c.

" * * " * *u/(

(I-p¢)V,/(\L) = C* C < C = (i-p O ) V*I (L) (37)
0 -uu 0 u Z

Finally, combining (37) with (31) yields the following bounds on the mean

packet del.av, for X [0," , (i,;m H))

D 1) D (3)

where 1) =A * + and D) A* +C*
U UI I I C '

02
"r'-°i

° 1 .
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We computed the bounds [Vu; l<k<N}, and {Vk; l<k<N}, required for the evalua-

pution of V. and V*, by solving system (11), for N 10, and with bk, l<k<10, as

defined in theorem 6. We, subsequently, computed the bounds V, and V , from (35),
*U'

and (36), respectively. In all computations we used m=m*, n=n as given in table

1. In table 5, we give the bounds C*, and C on the mean contention delay, as

found from (37), for representative values of the network parameters a,3, and for X

in the range [0, A(ca)). Finally, in figures 6, and 7 we plot the bounds Du, and

Dl on the mean packet delay, induced by the LANSA, with (m,n)=(m*,n*), as found from

(38), for representative values of the network parameters at. Note that the obtained

bounds remain tight, (they coincide up to the fourth decimal point), even for X

close to X(c, ).

6. A GENERALIZED VERSION OF THE ALGORITHM AND SOME COMPARISONS

The LANSA is one of the simpler algorithms that can be designed to operate

under limited channel sensing, yet it is inherently stable and attains high perfor-

mance. This is achieved by, simply, parametrizing its operation on the parameters

m and n, whose values are adjusted to the network characteristics for throughput

maximization. The question that arises then is: If we parametrize the operation of

the algorithm on a larger set of parameters, will this result in significant perfor-

mance improvement? To answer this questions, we developed and analyzed a generalized

version of the LANSA, named 0-LANSA. The rules of the G-LANSA are the same with

*. those of the LANSA, except for the following modifications.

Rule 1' -- Counter Initialization

'1 , j fk =ko

1 kl 1 M , if kI  kO , and the channel was busy with a successful transmission

M4 , if k # k0, and the channel was busy with a collision
1

where M, and M' are integer valued random variables with distributions

.4i '
o j . . . * .. ~
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11. for I <~ i < mn, j* for 1l< i<m

P(M=i) = P(M=i)

0 otherwise , 0 otherwise

an d where m > I and in > 1 are integer parameters.

Rule 3' -- Counter updating (First alternative)

a) If CIk > 1, then
1

Ci k - 1 , if the channel was idle during (kV, k i+)

Cik Ci k + M-1 , if a successful transmission occurred during (ki, ki+l)

CIk. + m-M-1 , if a collision occurred during (ki, k i+)
1

b) If CIk = 1, and a collision occurred during (ki, k i+l), then

CIkl Q

where Q is an integer valued random variable with distribution

iq for 1 < i < m + n

P(Q=i) =

0 otherwise

If CI = 1, and a successful transmission occurred during (ki, k i+), then the
1

user has successfully transmitted his packet, and he becomes idle.

Rule 3" - Counter updating (Second alternative)

Same as rule 3' above except for the following modification. if Clk. > 1, and

the channel was idle during (ki , kl), then
i+l

............................................
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CIk  =CI - R

where,

1 , if the last non-idle algorithm step before (ki, k i+) was successful

R = 0 , if the last non-idle algorithm step before (ki, k i+) was
unsuccessful, and CIk. > 2

R , if the last non-idle algorithm step before (ki, k i+) was
unsuccessful, and CIk. = 2

where R = I with probability p, and R = 0 with probability 1 - p.

From rule 1' we see that the G-LANSA, in contrast to the LANSA, distinguishes a

packet that arrived during a successful algorithm step from a packet that arrived

during an unsuccessful algorithm step; more specifically, the former is placed in

one of the first m cells of the stack according to the distribution { _i,l<i<M},

whereas the latter is placed in one of the first m cells of the stack according to

the distribution (1ii, l<i<;}. Since rule 1 of the LANSA is a special case of rule

1' with m=M, and {pi=Pi=l/m, l<i<ml, the performance of the G-LANSA will be at least

as good as that of the LANSA. Note, however, that rule 1' requires that a user, who

senses the channel upon his packet's arrival and finds it busy, should be able to

distinguish between a successful transmission and a collision before the channel

goes idle. In contrast, rule 1 is free of the above requirement, and, therefore,

the LANSA is easier to implement, compared to the G-LANSA. Concerning rule 3',

note that, when a collision occurs, the group of collided packets is split using the

first r;*n cells according to the distribution {qi, l<i<n+1}. Since the first m cells

are also used to accommodate newly arrived packets, we see that the G-LANSA, in con-

. trast to the LANSA, allows the "mixing" of new packets with collided packets in the

* first m cells of the stack. Als(s note that rule 3 of the IANSA is a special case of

rule 3' with inm and { i= , 1 - in; ( / + i s j

* *2
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Finally, rule 3" presents an alternative counter updating scheme in the event of

an idle algorithm step. Unlike rule 3', where a user always decrements his counter

by one (i.e., R=I), rule 3" requires that users be more "cautious" and decrement

their counters by either one or zero, depending on the past activity on the channel.

The rationale for this cautiousness is that if the last non-idle algorithm step before

the current idle step was unsuccessful, then the probability of a future collision

is increased. Thus, to avoid this possible collision, packets in cell #2 (if any)

are placed in cell #I (i.e., are transmitted) with probability p, or remain in

cell #2 with probability l-p, where p is a parameter to be optimized for throughput

maximization. Rule 3" is similar in spirit to the "skip step" introduced by Massey,

[i0Jto improve the performance of the original Capetanakis algorithm. For rule 3"

to be implementable, users should maintain a "flag" that indicates whether the last

non-idle algorithm step was successful or unsuccessful, since this determines the

value of R used in the updating of the counter. We note that this it possible, even

though users use only limited channel sensing.

Numerical Results and Throughput Comparisons

We analyzed the G-LANSA utilizing the methods used in the analysis of the LANSA.

In table 6, we give the results for the lower bound on the maximum stable through-

put attained by the G-LANSA that uses rule 3', for representative values of a, and

for = 1, 1 = 0.5 and a = . In the same table we include the best choices for

the algorithmic parameters. In all cases the probabilities i, Pi, and qi were

chosen as follows:

--i/m*, li*}, i/ * , l<i<m*},{q. = P*/*' l<i<r*; q. = (1-p*)/n*, Mr*+l<i<Mr*+n*}

where the values of m*, M_*, 1 , and p are as given in table 6.

We should point out, however, that X is not particularly sensitive to deviations

from the give optimal parameter choices.

,.;.-;--,.>.... ....,-'.. .. .:;. ..;. .-.;:. 7, -, ,."-"--- .', "-.'- - - -- , .' --, "" " .- " " " --''-"" ",-- -" """-: "."; : " *
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Comparison of tables 1 and 6 shows that, for = 1, the G-LANSA with rule 3'

coincides with the LANSA, since m =m , and p*=O; th:_,s if the users do not have early

collision detection capabilities, then, in the case of collision, "mixing" the

collided users with the newcomers, i.e., using p*#O does not improve the throughput

performance. However, for smaller values of B, using m*Omr*, and p*JO offers some

performance improvement over the LANSA (the corresponding X's differ in the third

decimal point). The maximum performance improvement (X increase in the second

decimal point) over the LANSA is attained by the G-LANSA that uses rule 3", when

6 =a. The results for A and the optimal parameter values for this case are given

in table 7.

In summary, the G-LANSA offers a slight performance improvement over the LANSA,

at the expense of increased operational complexity. Thus, unless 0 is very close to

a, the LANSA is practically sufficient.

In figure 8 we plot the lower bound X on the maximum stable throughput of the

LANSA and the G-LANSA as a function of a, for B = i, along with the maximum stable

throughput attained by the controlled NP-CSMA algorithms of [5], and the Window-CSMA

algorithms of [12]. Figure 9 presents the corresponding results for B = %. We

should point out that in the controlled NP-CSMA algorithms it is assumed that the

*, network users are aware of the number of backlogged packets currently in the system.

However, this information is not available to the users, and must be estimated.

The Window-CSMA algorithms are the extension of Gallager's algorithm [9], which

is the most efficient Tree algorithm known to date, to the carrier sensing environ-

ment considered here. The Window-CSMA algorithms use continuous channel sensing;

-: that is, users are required to sense the channel constantly even if they have nothing

- to transmit.

As it can be seen from figures 8, and 9, the proposed algorithms out perform

the control led NP-CSMA algorithms for every valise of the prop.is;ition delay a. The

maximn tat,dhle throughput attained by the Windew-CSMA a1;gorthas is sli)ghtly higher

.....................................--
*5S
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than the lower bound X for larger values of cL, but it becomes slightly lower than

* as a decreases. Thus, generally speaking, the proposed algorithms attain through-

puts as high as the Window-CSMA algorithms, despite the fact that the former use

limited channel sensing, and are much easier to implement than the latter.

So far we have compared the throughput performance of the LANSA and the G-LANSA

to the performance of two other heuristic algorithms. The question that arises then

*is: what is the maximum stable throughput that can be achieved by the optimal

algorithm, (i.e., the algorithm that attains the greatest maximum stable throughput)

in the class of algorithms that operate under the user - channel model described in

section 2. Given a user - channel model, the maximum stable throughput of such an

optimal algorithm is termed the capacity of the user and channel model. Considering

the class of all realizable algorithms that do not use short packets to reserve the

channel, Molle in [11] and Humblet in [24] have derived upper bounds on the capacity

of the user - channel model considered here. In [25], we have used the bounding

techniques developed in [26] to derive tighter bounds than those of [ll],and [24].

These upper bounds on the capacity are included in figures 8, and 9, for = i,

8 = a, respectively.

7. CONCLUSIONS

In this paper we presented "limited sensing" random access algorithms for carrier

sense multiple access channels. The proposed algorithms are representative members

of a new class of stable algorithms with "limited sensing" and "free access"

characteristics. "Limited sensing" algorithms require that users sense the channel

only while they have a packet to transmit, and, therefore, they have practical

advantages over algorithms that require conti uous channel sensing, such as the

algorithms in [121. The term "free access" is used to denote the fact that a user

may transmit a packet immediatelv after it ,ener; t ion, provided that he senst,. the

- channel idle; this lattel fCIturt sim1 I if , ; tie ik' p l elnt,1 t io ,t the a ,,0ri t h

even more .
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We demonstrated that the proposed algorithms combine simplicity and limited

channel sensing with inherently stable operation and high performance. More

specifically, we derived lower bounds on the maxiwum stable throughput induced by

both the basic algorithm, named LANSA, and its generalization, named G-LANSA. On

the basis of the derived bounds, we concluded that the proposed algorithms out perform

* the optimally controlled version of the traditional non-persistent CSMA algorithms

* [ 5 ], and have similar throughput characteristics with the most efficient Tree-

type algorithms [12], despite the fact that the latter use continuous channel

sensing and are more complex to implement.

We introduced bounding techniques that can yield arbitrarily tight upper and

lower bounds on the induced mean packet delay. We used these techniques to evaluate

the mean packet delay induced by the LANSA. The delay analysis exploited the

existence of points in time, where the stochastic processes associated with the

random access system probabilistically restart themselves. Using the theory of

regenerative processes we showed that the LANSA is stable if it induces persistent

regeneration points, with finite mean recurrence time, (i.e., L < -). Moreover,

it was shown that under the same condition the various "averages" concerning the

packet delay (limiting average, limiting expected average, and expectation with

respect to limiting distribution) exist and coincide. Many of the random access

algorithms encountered in the literature have regenerative properties. Thus, the

direction taken in this paper may be used in the stability analysis, and in the

evaluation of the mean packet delay of several other schemes. In this study we

dealt only with the mean packet delay. However, to fully characterize the delay

performance offered by the network, knowledge of the packet delay probability dis-

* tribution is needed. At this point, the analytical evaluation of the delay distri-

bution induced by the algorithms presented here seems extremely hard. Note, however,

that the bounding techniiues used ill this paper can be extended to yield arbitrarily

tig ht upper and lower bound ; on the hiIher mm0nt1 of the delay [28] . W( should

4!
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point out here that the LANSA and its generalization have last come - first served

characteristics (in a generalized sense); that is, new arrivals enter the system

upon arrival, and they are usually accommodated before packets already in the system

are. This characteristic causes relatively large variances i. the induced delay,

but it also favors "impatient" users. The favoritism to impatient users is advan-

tageous in networks in which packets must either be transmitted within a short time

limit or be lost [20]. However, to fully explore the last come - first served

characteristics of the limited sensing algorithms, additional research is needed.

The behavior of such algorithms must be studied when specific upper limits on delays

are imposed, and when packets in different stages of algorithmic progress depart

the system.

Finally, we note that the algorithms presented in this paper have been modified

to operate asynchronously in [27]. The asynchronous (unslotted) algorithms simplify

the operation of the network, since there is no need for the users to maintain a

global time base.

In closing, we mention that, very recently, Humblet [29], and Georgiadis et al.

[30] have independently shown that Tree algorithms can be modified to operate under

limited channel sensing. Unlike the algorithms proposed here, their algorithms have

"limited sensing" and "blocked access" characteristics. This is another class of

inherently stable algorithms, that combines high performance with simplicity, and it

should be further explored in the carrier-sense environment.

2
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APPENDIX

Proof of Theorem 2

Part (i)

To prove that system (6) has a non-negative bounded solution, {Yk1 k>0 , we

construct a sequence (yk  k>0' that serves as an upper bound to this solution.

With b and c appropriate real constants, we define

(o) A (0)A
Y Cc = bk-c , k> I. (A.1)

(n)}kO

We also define the sequences {y k )k>O, n>l, as follows

o

(0) A (n) A (n-i)
YO = ; Yk = ak,i Yi + gk ' k > 1 (A.2)

i=l

where the coefficients ak, i and g are as defined in the theorem.

In a straightforward manner we obtain

(1) (0)
Yk Yk - d k , k > 0 (A.3)

where do = 0, and dk9 k > 1, are as given in (A.5) and (A.6). Since the coefficients

a ik are non-negative, we deduce from (A.l), (A.2) and (A.3) that for every fixed

k > 0, the sequence {y(n) >0 will be non-negative and non-increasing, if we choose

b and c such that the following inequalities are satisfied:

bk-c > 0, for every k > 1, (h) i)). (A.4)

d I (1-(+c±)X) b - (l-m(l-s 0 ))c -(l+t(l+s()) _ 0 (A.5)

k 1+ k 1ro+k 0, for every k > I (A.6)

(1 wr, (I-ro)m + (-q ))l-I

'I ho,,, , tinder conditions (A.4), (A.5) , ,i- (A. ) th, fol , i , Iixit i t
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Y ( y k > 0 (A.7)~k yk k>
n-4 o

where yo = a, and yk < bk-c, k > i.

The numbers yk obtained in this manner solve system (6). Indeed, let us pass

to the limit as n-'O in equation (A.2). In the right hand side a term-by-term

passage to the limit is admissible, for the series at the right converges uniformly

as regards n, since it is bounded from above by the series with constant terms

(0)
Yk = bk-c. Thus, on effectiag this passage we find that

00

k= ak + gk k > 1
i=l

i.e., {yk' k>01 is indeed a solution to system (6).

Next we investigate the conditions under which inequalities (A.4), (A.5), and

(A.6) are satisfied. First we prove that Gk > 0, for every k > 2, n > 1, n > 2,

E > 0, a > 0, and X > 0. We have

-2 (A.8Gk > (l-qkQ)n-1 > (l-q2 0)n-1 > (1-(l-n )2)n-l = 1-n > 0 (A.8)

Also, from the well known inequality exp(-x) > l-x, we have that for X > 0

l-m(l-s O) > l-(l~mc)X (A.9)

From (A.6) and (A.8) we have that c must be positive. If l-(l+ma)X < 0 and

l-M(l-s0 ) > 0, then condition (A.5) cannot be true, since b > 0 and c > 0. If

(l-(l+ma)A < 0 and l-m(l-so) < 0, then to satisfy condition (A.5) we must choose

c > b, which contradicts condition (A.4). Thus,

-1

<(1m) (A.10)

Next we choose c and b such that (A.5) is met with equality; that is,

.0
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The above choice also guarantees that condition (A.4) is met, since, according to

(A.9) and (A.1O), we have

I. -l

0 < (l-(l+ma)X)(l-m(l-s0 )) < 1,

and therefore b > c.

Substituting (A.11) into (A.6) yields,

G (u b-vk) > 0 , k > 2 (A.12)
k kk k

where

vk=k (A)=(l+a(l+mso)) (l-m(lso)) -l+ -(l+mro+q ))(l-r)m+(l-q )n-1)

Uk=Uk (X)=(lI(l+Ma)M)(l-m(ls) ) -X (+(m+n)ca)((l-r0 )m+(l-qk, )n-1)

Since Gk > 0, since uk is a monotone increasing function of k, and since vk > 0,

k > 2, we have that condition (A.12) is met, if u 2 > 0, and if b > max {vk/U k}k>2"

Since the ratio v k/Uk is a monotone decreasing function of k, we choose b = v2 /u2.

Next we show that, given a,B,m, and n, the condition u2 (X) > 0 is met if

< A (cB;m,n) where X (a,6;m,n) is the unique root of equation (7) over the inter-

val [0,(l+ma)- ). First we write u2 (A) = F(X)/G 2 ( ), where F(X) (I-(I+Ma)X)•

(l-m(l-so)) G2 (X)-X(a+(m+)a). From (A.10) we have that G 2 (X) > 0, for every X > 0.

Thus, we examine only the function F(X). For this function it can be easily proved

that d 2F(X)/dX 2 < 0, for every XE[O,(l+mna)- l; that is, the F(X) is a concave func-

~-i)
* tion over the domain of interest. Now, since F(O) > 0 and F((l+mx) < 0, we

clearly have that the equation F(X) = 0, or equivalently equation (7) in the theorem,

has a unique root, X (Q,;m,n), in the interval (0,(l+m)- ). Furthermore, for all
0

.- C[O'A (ct,B3i;m,n)) we have that F(X) > 0, or equivalently

u 2 (A) = (l-(l-incB))(l-m(l-so))--( +(m+n)a)G 2
1(A) > 0 (A.13)

The construction of the lower bound, bk-c', on y is parallel to that of the

* upper bound and is omit ted. We onllv note that if we let

.4
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I -1
c' = ((l-(l+ma)X)b'-(l+a(l+ms0 ))(l-m(l-s0))

then, instead of condition (A.12), we now have the condition Gk(Ukb'-vk) < 0, k > 2,

whicb is satisfied if we choose b' = min(vk/Uklk>2 = v,/u .

Part (ii)

Here we show that the mean session lengths, {Lk> induced by the algorithm
k k>0'

coincide with the solution {yk}k>0 of part (i). The proof is intimately related to

the uniqueness of a solution to an infinite dimensional linear system, such as

system (6). We should point out that the question of the uniqueness of the solution

depends upon what conditions are imposed on the solution. The following lemma

indicates a class of sequences in which the solution of system (6) is unique.

Lemma A:

In the class of non-negative sequences {z k} k> for which

sup zk< (A.14)

k>l k 2

system (6) has a unique solution.

Proof Suppose that system (6) has two non-negative solutions satisfying (A.14),

and let the sequence {w k} k> denote their difference. Then, the sequence {w k}k>

satisfies condition (A.14), and solves the following system:

w= 0; Wk = i wi , k > 1

"" i=l

Next define w0  0 0, and Wk w k/(u k +u 2k+u ) for k > 1, where ul, u 2, u3 are real

constants with u > 0. The sequence {w solves the following system:
1 k k>0

, 0  = 0 ; Wk =i laki w. , k 1>

where aki= a (uli2+u+u3)/u I k > 1 k > 1.k"ai ,i 1 2u-)('k 2 3-

We shall prove that there exist coefficients u1 , u2 , u 3 , (u > 0), such that

.1

-. . . .. .... .. . . ... . - v~ .  ..-, . v -... .... .. .. .2..2..i'k
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o0

sup j akl < 1 (A.15)k>l
-- i=1

Assume that Ul, U2, u3 are chosen such that

Q(k) 1Uk2+u2k+u3 > 0 , for every k > 1 (A.16)

The following conditions are, clearly, sufficient for the validity of (A.16).

Ul>O, Q(1) = u1+u2+u3>0, and Q'(1) = 2 ul+u 2>0 (A.17)

Under condition (A.16), and after straightforward calculations we have

d ul+d u2+d u
a-i k ki 1 2k2 2 0k3 -k k>l1[a' ki' =~ ki 2 k= _

i=l i=l Ulk+u2 k+u3

2;where d =k-c ,d =k-c dk=l-C and where
k1 ki' k2 k29 dk3=l k3 ' n hr

Cll = l+(l+ma)0(l+(c+M-1 )X), c1 2 = l-(l+mcL)X, c1 3 = l-m(l-s 0)

Ckl = (1-n- ) -( 2c+l-n- )k- (i+A) -(B-Hn))d1+(&m-lct)) ) , k > 2

Ck2 = -X(a+a(m+n)), ck3 = l-m(l-r0)-n(l-qk,0) , k > 2.

Next we prove that k < 1, or equivalently that

cklU 1 + C k2u2 +c k3U 3 > 0 , k > I (A.18)

'* Assuming that uI > 0, we rewrite conditions (A.17) and (A.18) as follows

, + p + 1 > 0, 4 + 2 > 0 , Ck2 0 + ck3  + ckl > 0, k > 1 (A.19)

where = 2/uI, and p = u3/uI.

Given a,B,m,n, then, for every Xc[0,A (a,3;n,n)), we have thato0

0 < c2< ; < O, < 0, k > 2 (A.20)

furthermore, it tol]ows from (A.14) theft, for every k >- 2,
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0 < ck
'-

2 <-< 1 (A.21)
- k3  c13

Fioj .(A.20), and (A.21) we deduce that the inequalities given in (A.19) are satisfied

for any 0 and P, such that

> max(-2,- ci l  1)( cck - c1-)(Cl2- Ck )) k > 2.c \13 c 13) ' Ck3 c 13/ \c13 C k3 -

c12 C11 Ck2 Ckl- -- 0I - - < 2< - - -- ,k > 2
c13 c13 Ck3 Ck3

furthermore, inequalities (A.20) and (A.21), guarantee that such and 4 always

exist.

Thus, we have proved that there exist u1 , u2, u3 such that

CO

k a ki < 1 , for every k > 1 (A.22)

Also, from the functional form of and d we deduce that

dkl' dk2  ~ k3

r imk = 1 < 1 (A.23)

k- k 
n

Given n > 2, we choose an C > 0, such that 6 < min(n-,l-n- ). Then it follows

from (A.23) that there exists k0 > 1, such that

- 11 < E, for every k > k 
(A.24)

If we let

M =max (A.25)
' l< k < k 0

-0

then, from (A.22), we have that M < 1. Thus, it follows from (A.24), and (A.25)

that

- % %.................... ....
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h _ sup {k < max(1 + E, M) < I
k>l k n

Now, let P denote the supremum of IWk1, k > 1. From (A.14), we have that

P < 6, and that

IWkI _ Z laikl p < hP, for every k >1.

i=l

Thus, P < hP, and since h < 1, we have p = 0. Thus, IWk = 0 for every k > 1;

i.e., iwk1 = 0 for every k > 1, and the proof of the lemma is complete.

The solution X of part (i) clearly satisfies condition (A.14), thus, from lemma

A, we have that X is the unique non-negative solution to system (6) satisfying

condition (A.14). Next we use arguments parallel to those used in Theorem 6 of

[13], to show that yk = Lk9 for every k > 0. Let us consider the random variable

Z. = min(Z,T), where P is the session length, and T is a real number, T > 0. Also,

let Lk(T) = E(Z TIK=k), k > 0, where K is the multiplicity of the session. It can

be easily seen that

0 < Lk(r I ) < Lk(T 2 ), for any TVTi2 , such that 0 < TI < 12 (A.26)

eim L k(T) = Lk  k > 0 (A.27)

Since L (T) < T, from (6) and (A.26) we deduce that
k

0 < 1 0 (r) < c; 0 < Lk(T) < ak, i L,(T) + g k k > I

As was done in proving part (i) of the theorem, it can be shown that the solution

krkO maorizes 1,(r). k > 0, for any fixed T; that is, Lk(T) < Y k > 0. Thus,

from (A.26), (A.27) we deduce that Lk < Vk' k ", 0, and, therefore, the mean session

k kk
it , e ,,t i s convi *t i on (A. 14) . risinr, tile resuIt in l. ,l .A,

,'W, h'it Ie k  - f v; t, ov' , ,rv k 0 .

i,,'
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Proof of Lemma I

Given N > 1, and bk > 0, 1 < k < N, we define the sequences {x } N n>,

such that

N
(0) (n+l) A (n)x = yk-6 , x k a k,i b , 1 < k < N, (A.28)

i=l

where y,6 are real constants.

As was done in the proof of theorem 2, it can be shown that if X < Xo (a,;m,n)

then there exist y and 6, y > 6 > 0, such that xk < X = yk-6, for every k,

1 < k < N; (see [251 for details). Thus, from (A.28) we have that, for every n > 0,
(n+l) (n) (n) K

k < x , 1 _ k _ N. Thus, the limit xk = Zim X , as n-, exists and is

non-negative. Finally, taking limits, as n-, in both sides of (A.28) proves that

the sequence {Xk}l<k<N+ 1 solves system (11). To complete the proof of the lemma we

use the following standard result in the theory of finite linear systems with non-

negative coefficients (see, for example [11, Thm. 2.1]): if system (11) has a non-

-i
negative solution for every bk > 0, 1 < k < N, then the matrix (IN-AN) exists, and

has non-negative elements. Thus, given bk > 0, 1 < k < N, system (11) has a unique

non-negative solution x = (IN-A N)-b, where x = (xlp...,x N) , and b = (b1 .... bN) t

Proof of Theorem 3

Let {xkIl<k< N and {xk'l<k<N be the solution to system (11) that corresponds to

the non-negative sequence {bk )l<k<N and {b }l<k<N' respectively. If bk < b , 1 < k < N,

then from lemma 1 we have that x < x', 1 < k < N. This monotone increasing property

k k-k' - -

of the solutions to system (11) with respect to the non-negative forcing terms proves

*. the theorem. For example, to prove that Lk < Lu, 1 < k < N, we argue as follows.

From proposition 2, we have that fL I solves system (11) with forcing terms
k lk<N

b, = 11k + gk I < k N

i=N+l

If (t,f ;mol)* then from theorem 2 we havc that h ' where the coefficients

Jk

t'. -. .",. '.,".." .-".-"V '. ., :,-" ,"..," ,... --, .- . .- ."., ,. .-,, ,, .-," .+ ,"-..,'., " v -,,- .-':,,' +, ; 2 " ". , , > > "- - -K'
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bk, 1 < k < N, are as defined in theorem 3. Thus, from the monotonicity of the

solutions, we have that L < Lk , I < k < N. The lower bounds (L I are
k -k k <k<N

established in a similar manner.

Proof of Theorem 5

Part (i)

As it can be seen from the proof of theorem 2, to prove that system (21) has

a solution {Zk)k>O such that 0 < zk < U k 2+u 2k+u3' k > 1, it suffices to show that

there exist u1 , u2, u3, such that uk 2+u2 k+u 3 > 0 and

a (ui 2+u 2i+u3) + f k({L i j>0) < U k 2+u 2k+u for every k > 1 (A.29)

From theorem 2 we have that if X < X (a,6;mn) then 0 < L < y , where -- )
0 k- k ,hry

(0)and y = bk-c, k > 1. Thus, inequality (A.29) will be true if

0 < a k,i (U1 i2 2i+u3) + hk < uk 2+u 2 k+u 3 , for every k > 1, (A.30)
i= 1

where h = f k({y(0)} >). After straightforward manipulations, inequality (A.30)

becomes

,.. + + > h k ' k > 1, (A.31)

I ~~cklUl+ CkU2 +ck u- >h-

. wherec kl, Ck2 ' Ck3 ' k > 1, are as defined in the proof of theorem 2, where
.1

hI  1 + + -X(m-l)(X(a+ -1)b (l-s 0)c + X s)

1 1 2 1 1 1

11 1 - I)bk + -(n-l)(b(cX -I)-c)k + (bX(B+mc)-mc + mr (a+c))(k + -(-x(l m

+ (4a)k + 2 (x+c)k q k > 1
2 _

and where b, c are as defined in theorem 2.

If X X (i4[;m z), th'n from (A.18) we haiv that there exist real constants
0

i W u; such tha;t C klU +C "1 0 tor tever k > 1; furthermore
11 2 kI I k2 2 k3 3

- -- -. * . * . *. ....... .. .. .. ...
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2u'k +u'k+u'>0, k > 1. If we define 0 =SUofh I(c u'+c u +ck su~ k_ k_+ k-+ u ),k_>i} then 0<0<co,1-2 3" k1 1 k 2 2 k 3 3'

since hk > 0 for every k > 1, and since

tm(h k/CklUl+ck2U2'+ck3U3))<
k-

Thus, if we choose uI = 0 u', u2 = 0 u, and u3 = 0 u , then inequality (A.31) is

satisfied, furthermore u1 k2+u 2k+u3 > 0, k > 1. Thus, system (21) was a non-negative

solution {Zk}k>O, such that z0 = 0, and 0< zk < U1k2+u2+u 3 , k> 1.

The lower bounds {Ik2 +t2k+ 3}k>1 on the solution can be established in a

similar manner.

Part (ii)

The proof is parallel to the proof of part (ii) of theorem 2, and is omitted.

Proof of Lemma 2

The process {Z(t), t>0} probabilistically restarts itself at the algorithm

renewal instants, R , n > 1. Thus, it is regenerative with respect to the sequence

S{R n} n> with regeneration cycle coinciding with the LANSA session. The following

is a standard result relating to the regenerative process {Z(t), t>O}

.. = tim P(Z(t)=*) = E(amount of time in state j during one session)
E(time of one session)

where j=0,1, or 2. Furthermore, if we associate the process {Z(t), t>0} with the

Poisson arrival process, then it can be shown (see, [18, Thm. 31) that

tim P(Z(a n)=j) = tim P(Z(t)=j) = 7j , j=0,1,2.

We now proceed with the evaluation of the limiting probabilities, nrj, j=0,1,2.

Let 1, S, and U, denote the expected number of idle, successful, and unsuccessful

algorithm steps over the course of a session. Then, in view of (A.32), and for

- A <\ (a,B;m,), we have
0

. I l = (1 ) S/I,; TT = (1-+- )t /tI. (A.33)



All

where L is the mean session length.

Consider next an arbitrary session induced by the LANSA, and recall that the

session starts with the marker set to cell #2, and that it ends when the marker

drops to cell #1 for the first time. Since the marker's position is incremented by

m-i, or m+n-I after each successful, or unsuccessful algorithm step, respectively,

and it is decremented by one after each idle algorithm step, we have that

I = 1 + (m-1) S + (r+n-) U (A.34)

Also, since an idle, successful, or unsuccessful step lasts for a, 1+a, or B+a units

of time, respectively, we have that

L = a I + (l+a) S + (O+a) U (A.35)

Then, using equations (A.34), (A.35), and the fact that S = AL, in (A.33), we find

the expressions of the limiting probabilities given in the lemma.

.................................................
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Figure 1. Channel activity induced by the LANSA, as perceived by an arbitrary user X.

Slot size = a (maximum propagation delay).

Packet transmission time = 1 (or T /O slots)

Conflict truncation time = 8 (or R = S/I slots)

d represents the propagation delay between user X and user Y.
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LANSA 8 1 LANSA 8 =0.5 LANSA =a

. m* n* A m* n* m* n*

0.500 0.348 1 4 0.371 1 3 0.371 1 3

0.400 0.390 1 4 0.419 1 4 0.427 1 3

0.300 0.442 1 4 0.480 1 4 0.498 1 3

0.200 0.510 2 4 0.561 1 4 0.597 1 3

0.100 0.629 2 5 0.676 2 4 0.743 1 3

0.050 0.723 3 6 0.771 2 5 0.849 1 3

0.020 0.816 5 9 0.855 4 7 0.931 1 3

0.010 0.867 7 12 0.898 5 9 0.964 1 3

0.005 0.904 10 16 0.928 7 12 0.981 1 3

0.002 0.938 16 24 0.954 11 17 0.992 1 3

0.001 0.956 22 33 0.968 16 24 0.996 1 3

Table 1. The lower bound X on the maximum stable throughput of the LANSA,

and the parameters m* , n* for representative values of the

propagation delay a and the conflict truncation time B.
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Upper bound Lu(X), and lower bound Lz() on the mean session length L(X)

A
N c 0.5 --0.1 a =0.01 i=0.001

A 8=0.5 8 1 8=0.1 81 8=0.01 8 1 13=0.001 = I

Lu  L L L* L - L * L L L L L L L = L L * L
u L u Z u .t u Z u Z u u u Z

O 05 .542186 .542484 .105836 .106422 .001053 .010565 .001052 .001053

0.10 .597494 .599766 .112458 .113858 .001112 .011200 .001111 001113

0.15 .675017 .682702 .120075 .122636 .001787 .011918 .001176 .001181

0.20 .793406 .815925 .128970 .133235 .012535 .012739 .001250 .001257

0.25 .998311 1.066750 .139539 .146374 .013387 .013688 .001333 .001343

0.30 1.439901 1.712785 .152345 .163195 .014366 .014797 .001429 .001443

0.35 3.077182 7.018270 .168229 .185622 .015502 .016115 .001539 .001559

0.40 - - .188501 .217179 .016837 .017708 .001668 .001696

0.45 - - .215316 .265082 .018429 .019673 .001820 .001859

0.50 - - .252507 .346803 .020360 .022164 .002003 .002058

0.55 - - .307594 .518380 .022753 .025427 .002227 .002306

0.60 - - .397642 1.111720 .025796 .029892 .002507 .002623

0.65 - - .571461 - .329797 .036381 .002868 .003043

0.70 - - .047590 - .035291 .046691 .003351 .003626

0.75 - .043310 .065628 .004030 .004492

0.80 - .056113 1880 .005053 .005909

0.85 .- .079806 .398382 .006775 .008658

0.90 .- .138564 - .010279 .016273

0.95 - - .531879 .021297 .141640

Table 3.
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Upper bound A*(M), and lower bound A*(X)on the mean access delay A(X).

A
Na = 0.5 a z 0.1 a = 0.01 a = 0.001

S -

A 80.5 8:1 8:0.i 8=1 B=0.01 8:1 8:0.001 5=1

A A A -, A A =  A AA A A£ A A A- A Au- A
u nu u u I u u u u

0.05 0.3800 0.3869 0.0964 0.0914 0.0321 0.0309 0.0257 0.0255

0.10 0.4100 0.4178 0.1228 0.1184 0.0572 0.0562 0.0507 0.0505

0.15 0.4400 0.4501 0.1492 0.1459 0.0824 0.0815 0.0757 0.0756

0.20 0.4700 0.4843 0.1756 0.1740 0.1075 0.1070 0.1007 0.1007

0.25 0.5000 0.5212 0.2020 0.2029 0.1327 0.1325 0.1257 0.1258

0.30 0.5300 0.5615 0.2284 0.2328 0.1578 0.1583 0.1507 0.1510

0.35 0.5600 - 0.2584 0.2637 0.1830 0.1843 0.1758 0.1763

0.40 - - 0.2812 0.2960 0.2081 0.2104 0.2008 0.2015

0.45 -- - 0.3076 0.3298 0.2333 0.2369 0.2258 0.2268

0.50 - - 0.3340 0.3653 0.2584 0.2636 0.2508 0.2523

0.55 - - 0.3604 0.4029 0.2836 0.2907 0.2758 0.2778

0.60 - - 0.3868 0.4428 0.3087 0.3181 0.3008 0.3034

0.65 - - 0.4132 - 0.3339 0.3460 0.3258 0.3292

0.70 - -- 0.4396 - 0.3590 0.3742 0.3509 0.3550

0.75 - - 0.3842 0.4030 0.3759 0.3810

0.80 - - 0.4093 0.4322 0.4009 0.4071

0.85 - - - 0.4345 0.4620 0.4259 0.4334

0.90 - - - 0.4596 - 0.4509 0.4598

0.95 0.4848 0.4759 0.4864
--- - e

Tab Ie 4.
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Upper bound C *(X), and lower bound C(X) on the mean contention delay C()
L u
AA a 0.5 a = 0.1 a = 0.01 a = 0.001
N
S - ,,A 8=05 8=1 8=0-1 8=1 8=0.01 8=1 8= 0 -001 8=1

C u c £ Cu C£ Cu £ -cz C u -C£ z cu - C£ Cu- C£ Cu c C£ -z Cu= C

0.05 1.6240 1.6461 1.1094 1.1207 1.0118 1.0144 1.0023 1.0031

0.10 1.8298 1.8917 1.1273 1.1554 1.0169 1.0235 1.0066 1.0086

0.15 2.1696 2.3101 1.1555 1.2081 1.0260 1.0383 1.0145 1.0181

0.20 2.7534 3.0687 1.1964 1.2852 1.0399 1.0600 1.0264 1.0324

0.25 3.8552 4.6375 1.2535 1.3963 1.0594 1.0904 1.0434 1.0526

0.30 6.3832 8.9758 1.3319 1.5568 1.0858 1.1317 1.0664 1.0799

0.35 16.1615 1.4392 1.7932 1.1208 1.1871 1.0968 1.1162

0.40 _ - 1.5870 2.1543 1.1667 1.2614 1.1365 1.1640

0.45 - - 1.7951 2.7405 1.2264 1.3613 1.1881 1.2265

0.50 - - 2.0981 3.7957 1.3046 1.4973 1.2552 1.3088

0.55 - - 2.5644 6.1033 1.4078 1.6868 1.3429 1.4182

* 0.60 - - 3.3489 14.3073 1.5462 1.9597 1.4591 1.5660

0.65 - - 4.8955 - 1.7363 2.3735 1.6160 1.7713

0.70 - - 9.1909 - 2.0071 3.0535 1.8343 2.0676

0.75 ..- 2.4143 4.3357 2.1512 2.5213

0.80 .... 3.0799 7.5258 2 6421 3.2834

0.85 -- 4.3337 27.5038 3.4848 4.7887

0.90 .... 7.4811 - 5.2257 9.0118

0.95 128.6961 - 10.7536 79.0137

Table 5.



-4 -4

Inc
11

0 c
44

10I

4.

C4 41.

C: ul -4 W4'4 .4 4 ~ - .4 '4 4 .4 0

C444 1- N Im

~~~~,~~ 0 0N ' 4 i . 0 Q
A C') m 0n U) N0~ 4 0 4

4 -4 -4 -4 -4 C4

0. ** . 0 0 0 0 0to



G-LANSA (rule 3") a

M* m Mr* n* p*=p*

0.500 0.378 1 1 1 0.32

0.200 0.625 1 1 1 0.34

0.100 0.777 1 1 1 0.35

0.050 0.877 1 1 1 0.36

0.020 0.947 1 1 1 0.36

0.010 0.973 1 1 1 0.36

0.005 0.985 1 1 1 0.36

0.002 0.993 1 1 1 0.37

0.001 0.996 1 1 1 0.37

Table 7. The lower bound X on the maximum stable throughput

of the G-LANSA (rule 3"), and the parameters m* , m

n. * p * for representative values of the propa-

gation delay a and for =a.
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